Package: DDPstar 1.0-1
DDPstar: Density Regression via Dirichlet Process Mixtures of Normal Structured Additive Regression Models
Implements a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. The model assumes an additive structure for the mean of each mixture component and the effects of continuous covariates are captured through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. The proposed method can also easily deal with parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects. Please see Rodriguez-Alvarez, Inacio et al. (2025) for more details.
Authors:
DDPstar_1.0-1.tar.gz
DDPstar_1.0-1.zip(r-4.5)DDPstar_1.0-1.zip(r-4.4)DDPstar_1.0-1.zip(r-4.3)
DDPstar_1.0-1.tgz(r-4.5-any)DDPstar_1.0-1.tgz(r-4.4-any)DDPstar_1.0-1.tgz(r-4.3-any)
DDPstar_1.0-1.tar.gz(r-4.5-noble)DDPstar_1.0-1.tar.gz(r-4.4-noble)
DDPstar_1.0-1.tgz(r-4.4-emscripten)DDPstar_1.0-1.tgz(r-4.3-emscripten)
DDPstar.pdf |DDPstar.html✨
DDPstar/json (API)
# Install 'DDPstar' in R: |
install.packages('DDPstar', repos = c('https://mxrodriguezuvigo.r-universe.dev', 'https://cloud.r-project.org')) |
- dde - Dichlorodiphenyldichloroethylene (DDE) and preterm delivery data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 20 days agofrom:487196244e. Checks:8 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 01 2025 |
R-4.5-win | OK | Feb 01 2025 |
R-4.5-mac | OK | Feb 01 2025 |
R-4.5-linux | OK | Feb 01 2025 |
R-4.4-win | OK | Feb 01 2025 |
R-4.4-mac | OK | Feb 01 2025 |
R-4.3-win | OK | Feb 01 2025 |
R-4.3-mac | OK | Feb 01 2025 |
Exports:DDPstarfmcmccontrolpredict.DDPstarpredictive.checks.DDPstarprint.DDPstarpriorcontrolquantileResidualsquantileResiduals.DDPstarraesummary.DDPstar
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Density Regression via Dirichlet Process Mixtures of Normal Structured Additive Regression Models | DDPstar-package |
Dichlorodiphenyldichloroethylene (DDE) and preterm delivery data | dde |
Density Regression via Dirichlet Process Mixtures (DDP) of Normal Structured Additive Regression (STAR) Models | DDPstar |
Defining smooth terms in DDPstar formulae | f |
Markov chain Monte Carlo (MCMC) parameters | mcmccontrol |
Predictions from fitted DDPstar models | predict.DDPstar |
Posterior predictive checks. | predictive.checks.DDPstar |
Print method for DDPstar objects | print.DDPstar |
Prior information for the DDPstar model | priorcontrol |
Quantile residuals. | quantileResiduals quantileResiduals.DDPstar |
Defining random effects in DDPstar formulae | rae |
Summary method for DDPstar objects | summary.DDPstar |